Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 573-584, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38369842

RESUMO

Signal peptides (SP) are involved in regulating the secretion level and transmembrane translocation of chimeric antigen receptors (CAR), which is crucial for CAR-T cells. This study aimed to optimize the SP sequence by site-directed mutagenesis and investigate its impact on the killing function of CD19-CAR-T. Firstly, CAR vectors targeting CD19 containing wild-type SP (SP-wtY) or two mutant SP (SP-muK or SP-muR) were constructed using gene synthesis and molecular cloning techniques. The successfully constructed vector was packaged with lentivirus, and T cells were infected. The transfection efficiency of T cells was detected by flow cytometry, while the killing effect on target cells was assessed using the calcein release method. The secretion levels of cytokines interferon-γ (IFN-γ) and interferon-α (TNF-α) were measured using enzyme linked immunosorbent assay (ELISA). The results showed that successful construction of recombinant lentivirus plasmids with wild type and signal peptide mutation. After the transferring the lentivirus into T cells, the transfection efficiency of CD19-CAR carrying three signal peptides (SP-wtY, SP-muK, or SP-muR) were 33.9%, 35.5%, and 36.8%, respectively. Further killing assay showed that the tumor-killing effect of SP-muR cells was significantly higher than that of SP-muK and SP-wtY cells. When the ratio of effector to target was 10:1, the secretion levels of cytokines IFN-γ and TNF-α of CAR-T cells of the SP-muR group were significantly higher than those in SP-muK and SP-wtY groups. In summary, this study revealed that increasing the N-terminal positive charge of the signal peptide can improve the expression efficiency of CAR and promote the killing of CD19+ target cells. These findings provide a scientific basis the optimization and clinical application of CAR structure.


Assuntos
Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sinais Direcionadores de Proteínas/genética , Linfócitos T/metabolismo , Lentivirus/genética , Citocinas/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Mutagênese Sítio-Dirigida
2.
Int J Gen Med ; 16: 4849-4862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916194

RESUMO

Background: Ovarian cancer (OV) is the highest prevalent gynecologic tumor with complicated pathogenesis; high-grade serous ovarian cystadenocarcinoma (HGSOC) is the most epidemiological and malignant subtype of OV. Keratin type I cytoskeleton 19 (KRT19) is an intermediate filament protein which plays essential roles in the maintenance of epithelial cells. However, its role in OV remains largely unknown. Methods: Bioinformatic analysis with various databases was conducted in this study. In details, KRT19 expression was assessed using databases including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Omnibus (GEO) and Human Protein Atlas (HPA). GO-KEGG and GSEA analysis were performed by R packages. The biological function of KRT19 was analyzed based on the single-cell sequencing information from CancerSEA database. The association of KRT19 expression with immunomodulator and chemokine was predicted via the TISIDB database. Results: The expression of KRT19 was significantly upregulated in ovarian samples compared with normal controls. KRT19 expression was negatively associated with prognosis in OV, and further analysis revealed that KRT19 had promising diagnostic significance in distinguishing OV cancer from normal samples. GO-KEGG and GSEA analysis indicated that KRT19 was associated with multiple biological functions and pathways including epidermis development, apical junction, inflammatory response, and epithelial mesenchymal transition. By using different GEO series, we found that KRT19 was differentially expressed in OV-associated tissues. Furthermore, the increased KRT19 expression was positively correlated with the immune infiltration levels of the most immune cells in OV. Conclusion: This study demonstrated that KRT19 is a promising prognosis and diagnosis biomarker that determines cancer progression and is correlated with tumor immune cells infiltration in OV, suggesting being a molecular target for immunotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...